Pedagogical Implications of Parser Combinators
in Programming Languages Courses: A
Comparative Study*

Abbas Attarwala!, Pablo Raigoza?
!Computer Science Department
California State University
Chico, CA 95973

aattarwala@csuchico.edu
2Computer Science Department
Cornell University

Ithaca, NY 14850
pr428Qcornell.edu

Abstract

This paper recounts the experience of teaching parser combinators
in a programming language course using OCaml at both Boston Univer-
sity and California State University, Chico. The main focus is on how
parser combinators are introduced when teaching parsing to students
who are new to functional programming. Techniques such as boxes and
color coding are employed to simplify the understanding of the concepts.
Furthermore, teaching course evaluation data are presented to compare
course outcomes, contrasting semesters when parser combinators were
not used with those when they were incorporated into the teaching. Re-
flections and feedback from students provide insight into the effective-
ness of these teaching methods. Additionally, a two-tailed Welch t-test
is conducted on the teaching course evaluation data to assess the impact
of using parser combinators.

*Copyright (©2024 by the Consortium for Computing Sciences in Colleges. Permission to
copy without fee all or part of this material is granted provided that the copies are not made
or distributed for direct commercial advantage, the CCSC copyright notice and the title of
the publication and its date appear, and notice is given that copying is by permission of the
Consortium for Computing Sciences in Colleges. To copy otherwise, or to republish, requires
a fee and/or specific permission.

1 Introduction

This paper discusses the benefits of teaching parser combinators in a third-year
programming language course. The box representations for the parser and the
color coding for the parser combinators are introduced and explored, drawing
on experiences from Boston University (BU) and California State University,
Chico (CSU Chico). A common challenge that I' have observed is that stu-
dents initially create ad hoc parsers based on the context-free grammars (CFG)
provided for their projects. However, when project requirements evolve and a
revised CFG is introduced in later parts of the project, these initial parsers do
not scale well. As a result, students often face difficulties and must completely
rewrite their parsing code to accommodate the new requirements. I propose
that parser combinators could be a solution, potentially enabling students to
develop parsers that are more adaptable and scalable. To evaluate this hy-
pothesis, this paper compares and analyzes my teaching course evaluation data
across various semesters, focusing on student performance and adaptability in
courses taught with and without parser combinators.

In this paper, we define a parser as a function that takes a string as input
and produces an output that is either a tuple consisting of the parsed value and
the remaining unconsumed part of the string, or an indication that the parsing
has failed. A parser combinator is a higher-order function that takes one or
more functions or parsers as input and returns a new parser as output. It allows
for the construction of complex parsers by combining simpler components in a
modular and reusable way.

2 Literature Review

In our exploration of teaching methodologies for parser combinators, we have
identified a notable gap in the existing literature. Although there is extensive
documentation on the technical advantages and applications of parser combi-
nators, their pedagogical aspects have been largely overlooked.

Parser combinators [10], offer functional programmers a clean and flexible
method for constructing parsers. This flexibility is attributed to the abstrac-
tion they provide, distancing the programmer from complex parsing machinery.
However, [10] also presents a trade-off: This abstraction comes with the cost
of executing the combinators and the functions that build them, often neces-
sitating repetitive execution. [6] mentions that parser combinators are used in
parsing sequences generated by CFG, in specialized data formats like JSON
and YAML, and markup languages such as XML and HTML. Their paper also

1First person in this paper refers to Abbas Attarwala

1

>

1

6

illustrates the use of parser combinators in programming language processing,
specifically in identifying syntax errors.

Furthermore, [8, 9] emphasize the balance the parser combinators maintain
between flexibility and abstraction. Parser combinators enable the creation
of parsers in a style that remains close to the CFG. Highlighting the role of
higher-order functions [7], along with [5, 10|, points out the strengths in de-
veloping combinator libraries, particularly parser combinators. They underline
the beauty of these abstractions in functional programming, but also note the
scarcity of literature on their practical, maintainable, and scalable use.

Our research provides valuable insights into the pedagogical effectiveness
of parser combinators. By conducting a comparative study of course evalua-
tions from semesters with and without their use, we aim to demonstrate their
impact on student learning. While the current literature thoroughly explores
the technical strengths and applications of parser combinators, our research
examines their pedagogical value, offering a different perspective in the realm
of functional programming education.

3 Parser Combinators

In the Summer of 2020, while teaching CS 320 at BU my students built an inter-
preter for a stack-based programming language. They were provided with the
initial CFG and a set of operational semantics. As the project progressed, new
features were added, such as nested conditional statements. Initially, students
created parsers using regular expressions or some complex parsing involving a
stack, but these were ad hoc and struggled to adapt to the evolving grammar,
leading to significant rewriting and frustration for both students and myself.

To address this, I integrated parser combinators into the curriculum, begin-
ning at BU in the Fall of 2020 and continuing through Fall 2022 at CSU Chico.
Before introducing this concept, I engaged students with a simple OCaml ex-
ercise involving string parsing to demonstrate the practical benefits of parser
combinators. In this simple example, I ask my students to write an OCaml
code to parse the first three characters of a string but only if it begins with ‘a’,
followed by ‘b’ followed by ‘c’. The code in OCaml is shown in Listing 1. I pro-
vide my students with getFirstCharacter function which accepts a string
and returns back a option tuple of the extracted first character and the un-
consumed string.
let parse s =

match (getFirstCharacter s) with

| None -> None

| Some (firstC, rest) -> if firstC = 'a' then

(match (getFirstCharacter rest) with
| None -> None

© =

10

e e e
w o=

| Some (secondC, rest) -> if secondC = 'b' then
(match (getFirstCharacter rest) with
| None -> None
| Some (thirdC, rest) -> if thirdC = 'c' then
Some (true, rest)
else None)
else None)
else None

Listing 1: Parsing code without using parser combinators

Students quickly realize that while the initial code works, it’s not scalable
and becomes cluttered, especially with numerous error checks for parsing char-
acters other than ‘a’, ‘b’, or ‘c’. To address these issues, I guide them through
refactoring the code using parser combinators.

I define a parser as a function that accepts a string and returns an (‘a,
string) option type in OCaml. The option type indicates that the function
returns None if parsing fails, or Some if parsing is successful. In the case of
success, the Some tuple contains two elements: the parsed value (represented
by the type variable ‘a) and the remaining unconsumed string. I represent
parsers as boxes: the input is a string and the output is an (‘a, string)
option as seen in Figure 2. Another way to think about parser combinators is
like a glue that combines two parsers to create a new parser. The » operator is
a parser combinator, commonly referred to as the sequencing operator, which
I implement during my lecture. It not only links two parsers—p1l and p2—to
form a new parser p3 (let p3 = pl » p2), but also establishes a dependency
where p2 runs only if p1 succeeds, passing the unconsumed string from p1 to p2.
The type of » is defined as >a parser ->’b parser-> ’b parser. Following
OCaml’s operator naming conventions, the operator » associates to the left.
Figure 1 shows the refactored code that parses the first three characters of a
string, specifically ‘a’, ‘b’, and ‘c’, using this method.

et parse = let parse =

satisfy (fun c->c="a’) >> satisfy (fun c->c="a’)
satisfy (fun c->c="b’) >> satisfy (fun c->c="b’)

satisfy (fun c->c="c’) >> satisfy (fun c->c="c’)
return true return true

Figure 1: Refactored OCaml code using parser combinator. The same code on
the right is color coded to represent each parser. The red parser for instance
is a sequence of the purple parser followed by the grey parser. satisfy, », and
return are parser combinators.

I demonstrate to my students that satisfy is a combinator that verifies
if a string starts with a specific character. For example, satisfy (fun ¢ ->
c = ‘a’) returns a parser that checks whether the string begins with ‘a’. If
this check passes, satisfy (fun c -> ¢ = ‘b’) checks for ‘b’, followed by

satisfy (fun ¢ -> ¢ = ‘c?) checking for ‘c’. This sequential checking, fa-
cilitated by the » operator, simplifies error handling. The » operator inherently
handles errors, so if any parser in the sequence fails, the entire parsing process
fails. Unlike the explicit error checks in Listing 1, parser combinators allow
students to focus on parsing the required elements without worrying about
extensive error handling for intermediate steps.

In Figure 1, T also use color coding for each parser, which students refer
to in Figure 2 to visualize how the » operator unpacks the unconsumed string
and feeds it to the next combinator in the chain. In the color-coded diagram,
the first » in green sequences the two brown parsers to create the green parser.
The second » in purple sequences the green parser with the next brown parser
to create the purple parser. Finally, the third » in red sequences the purple
parser with the grey parser to create the red parser. The red parser returns
true if the string begins with ‘a’; followed by ‘b’, followed by ‘c’.

In Figure 2, I provide a color-coded visual representation of the parser
sequence from Figure 1. The colors in the visualization match those used
in the OCaml code in Figure 1. The red parser in Figure 2 is a sequence
consisting of the purple parser followed by the grey parser. The purple parser
itself is a sequence of the green parser followed by the rightmost brown parser.
Finally, the green parser is a sequence of two brown parsers. The process
begins with the red parser, which takes the input string “abexyz”. This string
is then passed through the purple parser to the green parser, and finally to the
leftmost brown parser, represented by satisfy (fun ¢ -> ¢ = ‘a’). The
leftmost » that creates the green parser takes the unconsumed string “bexyz”
from the first brown parser and passes it to the second brown parser. The
green parser’s output is the same as the second brown parser’s output. The
next » that creates the purple parser extracts “cxyz” from the green parser and
feeds it to the third brown parser. The purple parser’s output matches the
third brown parser’s output. Finally, the third » that creates the red parser
takes “xyz” from the purple parser and passes it to the grey parser. The return
true parser adds true to the tuple and places the unconsumed string in the
second position. The true indicates that the parsing has succeeded. Students
are encouraged to consider what abstract syntax tree can be returned at this
point instead of true. The grey parser’s output is also the red parser’s output.
From the red parser’s perspective, it processes the input string “abcexyz” and
returns the tuple Some (true, ‘‘xyz’’).

To accommodate different parsing requirements, such as allowing zero or
more spaces between characters, I provide an extensive library of parser com-
binators, including the many0 combinator. This combinator takes a parser as
input and runs it zero or more times, allowing it to parse sequences where a
particular pattern may occur multiple times or not at all. This example effec-

(S

“aboxyz’

Input: String

Output: (‘a, String) option

Some (true, "xyz')

Figure 2: On the left is a box representation of a parser. On the right each
color box represents a parser. For instance the purple parser is a sequence of
the green parser followed by the right most brown parser.

tively demonstrates to students the ease of adapting parser combinators to new
requirements. The new code that accommodates this is shown in Listing 2.

let space_parser =
satisfy (fun ¢ -> ¢ = ' '))

let parse_with_zero_or_more_spaces =

satisfy (fun ¢ -> ¢ = 'a') >>
many0 space_parser >>
satisfy (fun ¢ -> ¢ = 'b') >>
many0 space_parser >>
satisfy (fun ¢ -> ¢ = 'c') >>

many0 space_parser >>

return true
Listing 2: OCaml code to parse strings with zero or more spaces between the
letter ‘a’ and ‘b’; between ‘b’ and ‘c’ and after ‘c’.

In programming language courses, especially those focused on interpreter
creation and extensive parsing, the inclusion of parser combinators is crucial.
These combinators not only provide practical exposure to functional program-
ming principles like higher-order functions and immutability but also enhance
the readability and maintainability of code. This aligns well with the demands
of modern, agile software development, offering flexibility and ease of use for
rapid prototyping and adapting to evolving project requirements.

4 Teaching Course Evaluation Data

In Table 1, I present the evaluations for my Summer 2020 programming lan-
guages course at BU, which marked my first time teaching an OCaml course
without parser combinators, over six weeks via Zoom. The following year,
Summer 2021, I introduced parser combinators into the curriculum, dedicating
1.5 weeks to them and incorporating them into half of the assignments, as also
detailed in Table 1. The latest evaluations from my Summer 2023 course at
California State University, Chico, shown in Table 2, continue to reflect the
use of parser combinators over the same six-week Zoom format, allowing di-
rect comparison to the 2020 course without them. I have excluded evaluations
from Fall and Spring semesters due to the different 16-week format and mixed
in-person/online teaching during the pandemic.

Questions Summer 2020 Summer 2021
N SD Mean N SD Mean

The extent to which 16 .79 4.5 15 .96 4.13

you found the class

intellectually challenging:

The extent that 16 1.11 4.38 15 .5 4.47

assignments furthered your
understanding of

course content:

The instructor’s 16 .58 4.69 15 1.02 4.6
ability to present
the material is:
The instructor’s overall 16 g 4.69 15 .34 4.87
rating is:

Table 1: Course Evaluation data from Summer 2020 and Summer 2021 teaching
at BU on a scale of 1 (poor) to 5 (superior).

Some feedback from students in the Summer of 2020 at BU:

1. I think we could have definitely had a little bit more time for the last few
assignments as they are harder.

2. Problem sets were interesting and challenging.
Some feedback from students in the Summer of 2021 at BU:

1. Professor Attarwala was incredible at teaching this class! 320 with him
was the most engaging remote class I've been in during the pandemic.
His color coding, visualizations, and reinforcements really drilled in the
material.

2. Professor has a great way of explaining concepts. His enthusiasm is defi-
nitely infectious and his use of visual aids especially the virtual blackboard
with color-coded notation keeps me excited.

Questions N | SD | Mean
The course increased my knowledge of the subject matter: | 20 | .94 | 4.55

The assignments helped me understand the material: 20 | .94 | 4.55
The instructor presented in an understandable manner: 20 | .93 | 4.65
How do you rate the overall quality of teaching: 19 | .54 | 4.79

Table 2: Course Evaluation data from Summer 2023 at CSU Chico on a scale
of 1 (poor) to 5 (superior).

Some feedback from students in the Summer of 2023 at CSU Chico:

1. His teaching style allows me to really understand concepts and I love how
he visualizes concepts.

2. I very much enjoyed the prof. drawing on the board gave very good visuals
pointers for the current material that was talked about.

An analysis of the teaching evaluations in Table 1 and Table 2 reveals a
subtle, but informative, trend. The introduction of parser combinators slightly
affected the numerical ratings (especially of “The extent to which you found
the class intellectually challanging” i.e., it decreased slightly at BU, however a
comparable question at CSU Chico suggest that it increased again), but stu-
dent testimonials emphasize the success of my visual and color-coded teaching
methods in enhancing comprehension. When assessing the statement, “The
instructor’s ability to present the material is:”, the numerical ratings decreased
during the two semesters in which parser combinators were introduced. Con-
versely, for “The instructor’s overall rating”, the numerical ratings increased
in the semesters that included teaching with parser combinators. This con-
trast between quantitative and qualitative feedback highlights the complexity
of evaluating teaching effectiveness. While parser combinators increased course
difficulty, effective teaching practices ensured positive learning experiences. Fu-
ture investigations will employ my statistical frameworks [1, 2| to rigorously
assess the benefits of parser combinators in programming education.

5 Impact of Parser Combinators on Teaching Effective-
ness

In our examination of teaching outcomes, we anticipated that incorporating
parser combinators—a notably complex topic—into the programming course
curriculum would challenge students intellectually and improve their compre-
hension of the course material. In our research, the null hypothesis is stated
as there is no difference in teaching effectiveness with the integration of parser
combinators, and the alternative hypothesis, which anticipated a discernible

impact, whether positive or negative. To investigate these hypotheses, we con-
ducted a two-tailed Welch’s t-test with an alpha level set at 5%, which indicates
the threshold for rejecting the null hypothesis, across four dimensions of teach-
ing effectiveness from the teaching course evaluations, i.e., (1) The extent to
which you found the class intellectually challanging; (2) The extent that as-
signments furthered your understanding of course content; (3) The instructor’s
ability to present the material and (4) The instructor’s overall rating.

In our analysis, we used Welch’s two-tailed t-test and not the Student’s
t-test. The latter assumes homogeneity of variances across compared groups,
the data presented in Section 4 suggests variability in this respect. Therefore,
applying the Student’s t-test might result in misleading outcomes. Welch’s
t-test is more appropriate for our data, as it does not require equal variances,
as supported by the literature [3, 4]. It offers a more accurate analysis by
adjusting degrees of freedom based on the sample sizes and variances of the
groups compared. More formally here is how the t-statistic and the degree of
freedom are calculated for the Welch’s t-test:

— 2
t statistic = Mz H2 (‘ﬁ 4 ‘L%)
- o2 o2 ni na
\/ nﬁ + 772 Deg Freedom = G CIE
TL1—1 + ’n2—1

{1, pi2 are the means of the two groups, o7, 03 are their variances, and ny, ny
are the sample sizes. Table 3 displays the t-statistic, degrees of freedom, and
p-value for each of the four evaluation questions. The comparison is between
courses that included parser combinator instruction at BU in Summer 2021
and those that did not in Summer 2020. The table also presents t-statistics,
degrees of freedom, and p-values for the same four questions, comparing the
Summer 2023 parser combinator courses at CSU Chico with the non-parser
combinator courses at BU in Summer 2020.

While statistical significance was not achieved in the results, it is remarkable
that student evaluations consistently rated highly across all semesters, includ-
ing those following the introduction of parser combinators. This also suggests
a potential ceiling effect due to the high baseline of teaching performance (see
Table 1 when the course was taught without using parser combinators at BU).
Qualitatively, student feedback recognized and valued the increased depth and
rigor that parser combinators brought to the course. This feedback aligns with
my educational objectives of developing analytical skills and equipping students
for the intricacies of real-world programming tasks.

The absence of statistically significant differences might be interpreted as
an indicator of unchanged teaching effectiveness; however, it may also highlight
the robustness of instructional quality in the face of introducing more complex
subject matter. Future studies could explore different teaching methods or

examine the long-term effects of incorporating advanced computational con-
cepts into the curriculum. This research could provide valuable information on
optimizing educational improvement strategies.

With Parser Combinators
CSU Chico in Summer of 2023

Evaluation Item With Parser Combinators
BU in Summer of 2021

T-Stat DF P-Value | T-Stat DF P-Value

The extent to which you found

the class intellectually challenging 1.167 27.19 0.2532 ‘ -0.173 33.89 0.8634
The assignments helped me

understand the material -0.294 21.13 0.7716 ‘ -0.488 29.49 0.6289
The instructor presented in

an understandable manner 0.299 21.90 0.7675 ‘ 0.158 32.30 0.8756
How do you rate the overall quality of teaching -0.851 20.92 0.4045 ‘ -0.437 26.25 0.6658

Table 3: Results from Welch’s test comparing teaching evaluations of BU Sum-
mer 2021 and CSU Chico Summer 2023 against BU Summer 2020.

6 Conclusion

In conclusion, the integration of parser combinators into the curriculum has
been crucial in enhancing both code readability and adaptability, offering stu-
dents a different application of functional programming principles in the con-
text of parsing strings that is used very often in designing interpreter and
compilers. The teaching method I used, which included color-coded diagrams,
seems to have helped make parser combinators easier to understand. It is not
clear if every student preferred this way, but overall, their feedback did not get
worse, even with this challenging topic added to the course.

Although statistical tests did not produce significant results, this should not
overshadow the pedagogical benefits observed. The consistency of high student
evaluations, even with the incorporation of this advanced topic, suggests that
the educational quality was maintained at its usual high standard.

In addition, students have reported that the challenge of engaging with such
high-level material has been a rewarding experience. This qualitative feedback
highlights the value of integrating such advanced topics into the curriculum,
serving as a catalyst for developing critical thinking and problem solving skills.

Acknowledgement

We gratefully acknowledge the use of OpenAl’s ChatGPT for proofreading,
grammatical checks, and other text editing tasks.

10

References

1]

2]

3]

4]

5]

[6]

17l

18]
19]

[10]

Abbas Attarwala. “Live coding in the classroom: Evaluating its impact
on student performance through ANOVA and ANCOVA”. In: 2023 In-
ternational Conference on Intelligent Education and Intelligent Research
(IEIR). IEEE. 2023, pp. 1-6.

Abbas Attarwala and Kun Tian. “A statistical framework for measuring
the efficacy of peer review on students’ performance”. In: 2023 Inter-
national Conference on Intelligent Education and Intelligent Research
(IEIR). IEEE. 2023, pp. 1-7.

Marie Delacre, Daniél Lakens, and Christophe Leys. “Why psychologists
should by default use Welch’s t-test instead of Student’s t-test”. In: In-
ternational Review of Social Psychology 30.1 (2017), pp. 92-101.

Ben Derrick, Deirdre Toher, and Paul White. “Why Welch’s test is Type
I error robust”. In: The quantitative methods for Psychology 12.1 (2016),
pp. 30-38.

Jeroen Fokker. “Functional parsers”. In: Advanced Functional Program-
ming: First International Spring School on Advanced Functional Pro-
gramming Techniques Bastad, Sweden, May 24-30, 1995 Tutorial Text
1. Springer. 1995, pp. 1-23.

Mikhail Kuznetsov and Georgii Firsov. “Syntax Error Search Using Parser
Combinators”. In: 2021 IEEE Conference of Russian Young Researchers
in Electrical and Electronic Engineering (ElConRus). IEEE. 2021, pp. 490—
493.

Jamie Willis and Nicolas Wu. “Design patterns for parser combinators
(functional pearl)”. In: Proceedings of the 14th ACM SIGPLAN Interna-
tional Symposium on Haskell. 2021, pp. 71-84.

Jamie Willis and Nicolas Wu. “Design patterns for parser combinators in
scala”. In: Proceedings of the Scala Symposium. 2022, pp. 9-21.

Jamie Willis and Nicolas Wu. “Garnishing parsec with parsley”. In: Pro-
ceedings of the 9th ACM SIGPLAN International Symposium on Scala.
2018, pp. 24-34.

Jamie Willis, Nicolas Wu, and Matthew Pickering. “Staged selective parser
combinators”. In: Proceedings of the ACM on Programming Languages
4.ICFP (2020), pp. 1-30.

11

